Given the initial-value problem (IVP)

$$y^{(1)}(t) = f(t, y(t))$$
$$y(t_0) = y_0$$

we would like to approximate the solution y(t) on the interval $[t_0, t_f]$. We know that Euler's, Heun's and the 4th-order Runge-Kutta methods are order h, h^2 and h^4 , respectively, and we can approximate the error starting with N steps as follows:

- 1. Set $h \leftarrow \frac{t_f t_0}{N}$.
- 2. Use the method to approximate N values $y_0, y_1, y_2, ..., y_N$ using h.
- 3. Use the same method to approximate 2*N* values $y_0, z_1, z_2, ..., z_{2N}$ using $\frac{1}{2}h$.
- 4. The error of z_{2N} as an estimate of $y(t_f)$ is $z_{2N} y_N$, $\frac{z_{2N} y_N}{3}$ and $\frac{z_{2N} y_N}{15}$ for these three methods, respectively.
- 5. If the error is sufficiently small, then the best approximations are $y(t_k) \approx 2z_{2k} y_k$, $y(t_k) \approx \frac{4z_{2k} y_k}{3}$ and

$$y(t_k) \approx \frac{16z_{2k} - y_k}{15}$$
 with $k = 1, ..., n$ for these three methods, respectively;

otherwise, halve h and return to Step 2, now using 2N and 4N points.